The BRI1-Associated Kinase 1, BAK1, Has a brassinolide-independent role in plant cell-death control

Birgit Kemmerling,1 Anne Schwedt,1 Patricia Rodriguez,1 Sara Mazzotta,1 Markus Frank,2 Synan Abu Qamar,3 Tesfaye Mengiste,3 Shigeyuki Betsuyaku,4 Jane E. Parker,4 Carsten Müßig,5 Bart P.H.J. Thomma,6 Catherine Albrecht,7 Sacco C. de Vries,7 Heribert Hirt,1 and Thorsten Nürnberg1,*

1 Department of Plant Biochemistry
Center for Plant Molecular Biology
Eberhard-Karls-University Tübingen
72076 Tübingen
Germany
2 BASF Plant Science GmbH
BPS-LI444
67117 Limburgerhof
Germany
3 Department of Botany and Plant Pathology
Purdue University
West Lafayette, IN 47907-2054
4 Department of Plant-Microbe Interactions
Max-Planck-Institute for Plant Breeding Research
50829 Köln
Germany
5 Department of Genetics
University of Potsdam
14476 Potsdam-Golm
Germany
6 Laboratory of Phytopathology
Wageningen University
Wageningen 6709 PD
The Netherlands
7 Laboratory of Biochemistry
Wageningen University
Wageningen 6703 HA
The Netherlands
8 Department of Plant Molecular Biology
Max F. Perutz Laboratories
University of Vienna
1030 Vienna
Austria

Programmed cell death (PCD) is a common host response to microbial infection [1–3]. In plants, PCD is associated with immunity to biotrophic pathogens, but it can also promote disease upon infection by necrotrophic pathogens [4]. Therefore, plant cell-suicide programs must be strictly controlled. Here we demonstrate that the Arabidopsis thaliana brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1), which operates as a coreceptor of BRI1 in brassinolide (BL)-dependent plant development, also regulates the containment of microbial infection-induced cell death. BAK1-deficient plants develop spreading necrosis upon infection. This is accompanied by production of reactive oxygen intermediates and results in enhanced susceptibility to necrotrophic fungal pathogens. The exogenous application of BL rescues growth defects of bak1 mutants but fails to restore immunity to fungal infection. Moreover, BL-insensitive and -deficient mutants do not exhibit spreading necrosis or enhanced susceptibility to fungal infections. Together, these findings suggest that plant steroid-hormone signaling is dispensable for the containment of infection-induced PCD. We propose a novel, BL-independent function of BAK1 in plant cell-death control that is distinct from its BL-dependent role in plant development.

Results

Plant receptor-like kinases (RLKs) belong to the monophyletic interleukin-1 receptor-associated kinase (IRAK) or RLK/Pelle family [5]. Several leucine-rich repeat (LRR)-RLKs have roles in plant growth and development [6–8]. For example, Arabidopsis Brassinosteroid Inensitive 1 (BRI1), the receptor for the plant steroid hormone brassinolide (BL) [9], is an LRR-RLK that forms heterodimeric complexes with another LRR-RLK, BRI1-associated receptor kinase 1 (BAK1) [10, 11] in a hormone-dependent manner [12]. Plant LRR-RLKs also function as pattern-recognition receptors in basal and cultivarspecific plant innate immunity [13–16]. Likewise, microbial pattern recognition by animal immune cells employs LRR transmembrane receptors, suggesting conceptual and mechanistic conservation in pattern recognition in different lineages [14, 17]. The size of the gene families of plant LRR-RLKs [5] and the involvement of some LRR-RLKs in plant immunity suggest important roles of these proteins in plant-pathogen interactions [13, 14]. To identify plant immunity-associated LRR-RLKs, we conducted experiments of gene-expression profiling with Arabidopsis Col-0 plants infected with various Pseudomonas syringae strains. Gene-expression analysis revealed increased transcript accumulation for 32 genes, including the BRI1 coreceptor BAK1 [10, 11] (Figure S1 in the Supplemental Data available online). BAK1 transcript levels in plants infected with avirulent (P. syringae pv. tomato DC3000 AvrRpm1, PtoAvrRpm1) or nonpathogenic strains (Ptohrc–, P. syringae pv. phaseolicola, Pph) increased by more than 2-fold compared to those in controls, whereas BAK1 expression was repressed upon infection with virulent PtoDC3000 (Figures S1B and S1C). Two homozygous mutants carrying independent T-DNA insertions in BAK1 (bak1-1, bak1-4 in Col-0) that lacked the BAK1 transcript were obtained (Figure 1A and B). As described forWs bak1-1 and bak1-2 alleles [10, 11], both Col-0 bak1 lines exhibited reduced leaf growth (~20%, Figure 1C), shorter hypocotyls in the dark, and partial BL insensitivity in root-growth assays (data not shown). Infection of Col-0 plants with...
PtoDC3000 resulted in lesions that were restricted to infection sites, whereas infection of both mutant lines produced leaf chlorosis followed by spreading necrosis 4 days after infection (DAI) (Figure 1D). However, bacterial growth in Col-0 and bak1 mutant lines did not differ (Figure 1E). Infection of bak1 mutants with strains PtoAvrRpm1 (Figure S2), PtohrcC, or Pph (data not shown) resulted in symptoms and bacterial growth rates that were indistinguishable from those on Col-0.

To test whether impaired cell-death control in bak1 mutants also occurs upon infection by other pathogens, we conducted necrotrophic-fungal-infection assays. Infection with the virulent fungus Botrytis cinerea caused the complete decay of bak1 plants (Figure 2A), and initial fungal growth was much higher on bak1 mutants than on Col-0 (Figure 2B). Likewise, Alternaria brassicicola spore inoculation of bak1 mutant plants resulted in increased lesion size and disease indices when compared to inoculated Col-0 (Figures 2C–2E). Enhanced susceptibility to A. brassicicola was also observed in seedlings grown under axenic conditions (Figures S3A and S3B). Conidial structures developed in bak1 mutant lines but not in Col-0 plants (Figure S3C) and were found also in leaf areas beyond infection foci. These findings suggest that deregulated host cell death in bak1 mutants affects both host immune responses to virulent pathogens and nonhost resistance to A. brassicicola.

Complementation assays confirmed that the phenotypes observed in the bak1 mutants were due to disruptions of the BAK1 gene. Transformation of a genomic DNA fragment containing the BAK1 gene into the bak1-4 background (gBAK1) restored wild-type growth and resistance to fungal infection (Figures 2G and 2H). Because the bak1 mutation is recessive and the entire F1 progeny from crosses of homozygous bak1-3 and bak1-4 mutants showed reduced leaf growth and enhanced susceptibility to A. brassicicola (data not shown), we concluded that mutated BAK1 is responsible for both bak1 phenotypes. Also, overproduction of BAK1 green fluorescent protein (GFP) in Col-0 resulted in reduced lesion formation and disease development upon A. brassicicola infection (Figure S4) compared to that in wild-type Col-0. Accordingly, gBAK1 lines exhibiting increased BAK1 expression (Figure 2F) had reduced necrosis and susceptibility to fungal infection compared to that of Col-0 (Figures 2G and 2H), suggesting that BAK1 levels control plant programmed cell death (PCD) and immunity to necrotrophic fungi.

Microscopic examination revealed that lesions (monitored by trypan blue) spread beyond fungal infection foci in bak1 lines but remained restricted to inoculation sites in Col-0 (Figures 3A and 3B). This was not observed in another mutant, bos1, which is more susceptible to B. cinerea and A. brassicicola [18]. Cell death did not
occur in uninoculated bak1 plants. Thus, bak1 is not a spontaneous lesion-mimic mutant of the lsd class [2], and susceptibility to fungal infection is unlikely to be due to an enhanced saprophytic growth base for necrotrophic pathogens in bak1 plants. Supporting this conclusion, salicylic acid caused necrosis in uninfected lsd1 mutants [19] but not in bak1 lines (Figure S5).

The production of reactive oxygen intermediates (ROIs) is correlated with plant cell death [2] and can enhance susceptibility to necrotrophic pathogens [4]. We tested whether infection-triggered spreading necrosis in bak1 mutants was accompanied by ROI formation. 3,3'-diaminobenzidine staining revealed H$_2$O$_2$ in A. brassicicola-infected wild-type and bak1 mutant plants (Figure 3C). However, ROI production was stronger in bak1 lines and always spread into uninoculated areas. The same response was observed upon infection with PtoDC3000 (Figure S6). Moreover, ROI microbursts appeared in infected leaves before the appearance of microscopic lesions (Figure S6). Notably, bak1 mutant lines were not generally more sensitive to oxidative stress because their responses to paraquat or H$_2$O$_2$ were indistinguishable from those of Col-0 (data not shown).

Bak1 mutants develop deregulated cell death specifically in response to necrotizing pathogens (Figures 1–3). We tested whether responses to the biotrophic

![Figure 2. Loss of BAK1 Function Results in Enhanced Susceptibility to Infection by Necrotrophic Fungi](image)

A. Infection phenotypes of representative Col-0 and bak1 mutant plants at 7 DAI by B. cinerea.

B. Quantification of fungal biomass in infected Col-0 and bak1 plants by RNA-blot hybridization with a B. cinerea-Actin A-specific probe at the time points indicated (hours after infection [HAI]).

C. Infection phenotypes of leaves from representative Col-0 and bak1 mutant plants at 7 DAI by A. brassicicola.

D. Calculation of disease indices on Col-0 and bak1 plants at 7 DAI by A. brassicicola.

E. Lesion size determination at 7 DAI by A. brassicicola.

F. RT-PCR analysis of BAK1 transcripts in Col-0, bak1-4, and bak1-4 lines that were complemented with a genomic fragment encoding BAK1 (gBAK1-1, gBAK1-2).

G. Infection phenotypes of leaves from representative lines as in (F) at 7 DAI by A. brassicicola.

H. Calculation of disease indices from experiments shown in (G). Similar results were obtained in three independent experiments (n ≥ 16). Results represent means ± SD; * indicates significant differences from Col-0 wild-type (p < 0.05).
oomycete Hyaloperonospora parasitica were affected in bak1 mutants. Infections of bak1 plants with virulent or avirulent isolates did not induce spreading cell death or alter hyphal growth when compared to Col-0 (Figure S7). However, conidiophore formation indicative of pathogen reproduction was reduced on bak1 mutants infected with the virulent isolate Noco2 (Figure S7). Growth of other virulent isolates was also impeded, whereas resistance gene-dependent immunity against avirulent isolate Cala2 was unaffected (unpublished data). Our findings suggest that BAK1 has opposing roles in resistance to necrotrophic and biotrophic pathogens.

LRR-RLKs have been implicated in signaling processes and thereby probably control stimulus-specific transcriptional reprogramming. We addressed whether BAK1 controls the expression of genes associated with plant PCD and immunity by performing transcriptome analyses of noninfected or A. brassicicola-infected bak1-3 and Col-0 plants (Table S2). Expression of 38/8 genes was differentially induced/repressed in noninfected, nonnecrotic bak1-3 lines compared to that in Col-0 (Table S1). Importantly, the conditional expression of 41 of these genes, including pathogenesis-related (PR) genes PR-2 and PR-5, is associated with microbial infection (Table S1, Figure S8). Thus, BAK1 likely contributes to the control of infection-induced plant transcriptional responses. Comparison of gene expression patterns in A. brassicicola-infected bak1-3 and Col-0 lines revealed that expression of 39/54 genes was induced/repressed by more than 2-fold in bak1-3 lines relative to those in Col-0; 47% of these expression patterns are associated with microbial infection (Table S2). Relative to those in Col-0, deregulated gene expression patterns in noninfected and infected bak1-3 mutants did not significantly overlap (the expression of 3/46 genes that were deregulated in noninfected bak1-3 versus Col-0 was also deregulated in infected bak1-3 versus Col-0; Table S1 and Table S2), suggesting that BAK1 controls the expression of distinct sets of genes in noninfected and infected plants.

The bak1 mutant phenotypes suggested a link between steroid-hormone activity and cell-death control. We therefore tested whether defects in brassinosteroid signaling cause runaway cell death upon infection with necrotizing pathogens. We found that (1) treatment of wild-type plants with 1.5 μM brassinolide did not increase resistance to bacterial or fungal infection (Figure S9, Figure 4C). The same result was obtained after foliar application of lower (300 nM) or higher (15 μM) BL concentrations (data not shown). Our findings contrast with moderately increased levels of pathogen resistance reported in tobacco or rice upon treatment with 20–200 μM BL [20], suggesting plant-species-specific differences in BL activities. (2) Spraying bak1 mutant plants with 1.5 μM BL restored wild-type growth (Figures 4A and B) but failed to complement cell death (data not shown) and resistance-associated mutant phenotypes in infection assays (Figure 4C). (3) Analysis of other BL-signaling mutants for enhanced disease susceptibility to A. brassicicola infection revealed that mutants impaired in BL perception (brl1-5 [21], brl3...
brl1brl3 or in BL biosynthesis (cbb1 [23], α-cpd [23], rot3-4 [24]) were not more susceptible to fungal infection (Figure 4D). We purposefully performed these assays on weak BL mutants to avoid severe growth defects that might arise from hormone insufficiency affecting infectivity of the fungus. (4) Because hormone activities are often linked to changes in gene expression patterns [25], we investigated whether early changes in transcript profiles of Col-0 plants treated with BL (0.5, 1, 3 hr) or infected with PtoDC3000 (2, 6, 24 hr) overlapped. Of 2300 genes that were induced upon bacterial infection, only 17 were coinduced by BL treatment (“+BL”) or absence (“−BL”); water used as control of 1.5 μM brassinolide. “***” indicates no significant difference from −BL controls (p < 0.01).

Calculation of disease indices of wild-type Col-0 and bak1 plants at 7 DAI with A. brassicicola in the presence (“+BL”) or absence (“−BL”; water used as control) of 1.5 μM brassinolide. “**” indicates no significant difference from −BL controls (p < 0.01).

Gene expression of 136 genes whose expression in noninfected or infected bak1-3 mutants was deregulated relative to Col-0 was also regulated by BL. Only three genes (2.2%) showed BL-induced/repressed expression patterns (Tables S1 and S2). Together, our data suggest that BAK1 activity in plant cell-death control is BL-independent.

Discussion

Higher eukaryotes have evolved PCD mechanisms that play important roles in development and immunity [1, 2]. PCD is a common host response in plant-pathogen interactions and mediates both disease resistance and susceptibility [4]. Hypersensitive cell death is frequently associated with plant cultivar-specific host immunity [3, 14], whereas PCD in susceptible plants is caused by necrotizing pathogens that utilize virulence factors...
to trigger host cell-death programs [2, 4]. The timely induction of PCD presents a formidable barrier to biotrophic pathogens, but defense strategies that culminate in PCD render the plant more susceptible to necrotrophic pathogens and must therefore be tightly controlled.

The nature and activities of core regulators of plant PCD are poorly understood [2]. How many PCD programs operate in plant development and immunity is also unclear. In animal or yeast cells, multiple cell-death pathways that control growth, differentiation, and immunity have been defined [1, 27]. However, plant proteins with a negative regulatory role in PCD, such as LSD1, ACD1, ACD2, and ACD5, are not related to metazoan PCD regulators [28], and members of the known classes of animal cell-apoptosis regulators (BCL-2/CED-9, APAF1/CED-4, and caspase/CED-3) are not found in plant genomes [2]. These findings suggest that alternative, structurally distinct regulators have evolved to control PCD in plants [2].

We show here that BAK1 constitutes a novel negative control element of microbial-infection-induced cell death in plants. BAK1 differs from other known negative regulators of plant PCD in several respects: (1) bak1 is a conditional, propagative cell-death mutant that does not produce spontaneous lesions during normal development. (2) bak1 mutants are not more sensitive to oxidative stress than are wild-type plants. (3) bak1 does not develop salicylic-acid-inducible PCD. And (4) PCD in bak1 plants is triggered after infection with virulent, necrotizing pathogens, whereas cell death associated with host cultivar-specific immunity or caused by necrotizing elicitors is unaffected (unpublished data). The molecular mechanisms by which negative regulators of plant PCD operate might be diverse. These proteins might regulate PCD directly or control processes whose perturbation leads to altered cellular homeostasis and cell death [28]. How BAK1 keeps in check this potentially destructive defense mechanism will be investigated with the information provided by our microarray experiments.

BAK1 represents a second example of a plant LRR-RLK with dual functions in plant development and immunity. ERECTA encodes an LRR-RLK with a defined role in flower development but was recently also implicated in plant pathogen resistance [15, 16]. Involvement of LRR-type proteins in developmental and innate immune programs was also reported in animals, suggesting that multitasking of proteins in development and immunity is evolutionarily conserved [29]. A prime example is the Drosophila plasma-membrane LRR protein TOLL, which controls embryonic patterning and immunity against fungal infections in adult insects [30].

We show that BAK1 function in PCD control is independent of the steroid hormone, BL. Therefore, we propose that BAK1 serves a BL-independent function in plant immunity, in addition to its established BL-dependent role in development [7, 8] (Figure S10). This conclusion is supported by the concomitant inactivation of two closely related members of the small somatic embryogenesis receptor kinase gene family in Arabidopsis [31], BAK1/SERK3 and BAK1-like Kinase 1/SERK4 (BKK1) [32] causing spontaneous cell death and post-embryonic lethality [32]. Importantly, no known plant mutant with defects in BL-dependent development exhibited cell death, favoring an additional role of BAK1 in controlling host PCD. Inactivation of BKK1 or other SERK gene family members did not result in spontaneous PCD [32] or infection-induced spreading necrosis (data not shown). Thus, BAK1 activity is crucial for the containment of plant PCD in response to necrotizing pathogens, whereas BKK1 might have an accessory role in controlling cell death.

Proteins with dual functions must be strictly controlled. BAK1 activity in plant development is regulated by BKL1, which prevents BAK1/BRI1 heterodimerization in the absence of BL [33]. Identification of additional proteins that interact with BAK1 and control its BL-independent activity should provide insight into how specificity in plant developmental and immunity programs is maintained.

Supplemental Data
Experimental Procedures, ten figures, and two tables are available at http://www.current-biology.com/cgi/content/full/17/13/1116/DC1/.

Acknowledgments
We thank K. Schumacher, J. Chory, T. Nakagawa, A. Gust, and F. Tax for materials; V. Lipka and F. Tax for comments; and M. Tör for sharing data. We acknowledge the Salk Institute, Nottingham Arabidopsis Stock Center (NASC), and American Biological Resource Center (ABRC) collections for mutant seeds and the ATGenExpress Initiative for sharing data sets. This work was supported by the Deutsche Forschungsgemeinschaft (Arabidopsis Functional Genomics Network [AFGN], SFB446) (T.N.), Deutscher Akademischer Austauschdienst (P.R.), the Max-Planck-Society DFG SPF 635 (J.E.P.), and The Japan Society for the Promotion of Young Scientists (S.B.).

Received: February 27, 2007
Revised: May 16, 2007
Accepted: May 17, 2007
Published online: June 21, 2007

References

