Plant Gene Register

Arabidopsis Gene and cDNA Encoding Cell-Wall Invertase

Nicole Schwebel-Dugué, Nourredine El Mtili, Micheline Krivitzky, Isabelle Jean-Jacques, John H. H. Williams, Martine Thomas, Martin Kreis, and Alain Lechamyn*

Biologie du Développement des Plantes, Bâtiment 430, UA-Centre National de la Recherche Scientifique 1128, Université de Paris-Sud, 91405 Orsay Cedex, France

Suc is the final product of photosynthesis, but before it can be utilized it must be cleaved into hexoses either by invertase (β-fructofuranosidase, EC 3.2.1.26) or by Suc synthase (EC 2.4.1.13). There are three recognized types of invertase present in plant cells: soluble neutral invertase, soluble acid invertase, and insoluble cell-wall acid invertase. Invertase genes encoding cell-wall and vacuolar (soluble) acid invertases have been characterized from *Daucus carota* (Ramloch-Lorenz et al., 1993) and from *Lycopersicon* (either *esculentum* or *pimpinellifolium*, Elliott et al., 1993), respectively. So far, no invertase gene from *Arabidopsis thaliana* has been isolated.

We report here the characterization of a cell-wall invertase gene from *A. thaliana* and its cognate cDNA. A genomic fragment containing *Atbfruct1* was identified by screening a genomic library (EMBL3, Clontech, Palo Alto, CA) with a 1-kb fragment from a cDNA encoding a cell-wall invertase in *D. carota* (Sturm and Chrispeels, 1990). The *Atbfruct1* cDNA clone was identified by screening an *A. thaliana* cDNA library with exon 3 of the *Atbfruct1* gene. The genomic clone *Atbfruct1* is 4237 bp in size (Table 1). Alignment of the *Atbfruct1* gene sequence with that from its cognate cDNA showed the presence of seven exons. The organization of the gene is similar to that of invertase genes in *D. carota* (Ramloch-Lorenz et al., 1993) and *L. esculentum* (Elliott et al., 1993), but the size of the introns is significantly smaller in *A. thaliana*. In *Atbfruct1* and both tomato genes, exon 2 is only 9 bp long and encodes part of a highly conserved region found in all known invertase proteins (NDPNG). By way of contrast, in the *D. carota* gene this short nucleotide sequence

<table>
<thead>
<tr>
<th>Table 1. Characteristics of Atbfruct1 from A. thaliana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism: Arabidopsis thaliana (L.) Heynh. ecotype Columbia.</td>
</tr>
<tr>
<td>Gene Product: Cell-wall invertase (β-fructosidase, EC 3.2.1.26); hydrolysis of Suc.</td>
</tr>
<tr>
<td>Clone Types: Genomic clone λ201 containing gene Atbfruct1 in an EcoRI fragment of 4237 bp. cDNA clone Atbfruct1: full length, 1947 bp; pBluescript SK(−).</td>
</tr>
<tr>
<td>Techniques: Heterologous screening of a genomic library with a 1-kb fragment from cell-wall invertase cDNA from D. carota (Sturm and Chrispeels, 1990). Homologous screening of a leaf cDNA library with exon 3 of the Atbfruct1 gene.</td>
</tr>
<tr>
<td>Features of cDNA: 19-bp untranslated 5′ end; 176-bp untranslated 3′ end; 1755-bp open reading frame.</td>
</tr>
<tr>
<td>Characteristics of Deduced Protein: Open reading frame encodes a polypeptide of 584 amino acids of M, 66,280. Isoelectric point = 9.11. The deduced protein contains a putative peptide signal (M1-A29) and four potential glycosylation sites (N-X-S/T): N159, N166, N232, N446.</td>
</tr>
</tbody>
</table>

This protein has an amino-terminal peptide containing a
(cell wall and vacuole), irrespective of species and even for invertases from the same plant (i.e. *D. carota*). Furthermore, invertases from the same cell compartment (the vacuole) have scores higher than 45 even though they come from different species. ATBFRACT1 has similarity scores of 25 and 30 with the two characterized vacuolar invertases and a score of 45 with the cell-wall invertase from *D. carota*. These results strongly suggest that *Atbfruct1* codes for a cell-wall invertase.

ACKNOWLEDGMENT

We are grateful to Dr. A. Sturm for kindly providing us with the 1-kb fragment of carrot cell-wall invertase.

Received October 7, 1993; accepted October 26, 1993.
Copyright Clearance Center: 0032-0889/94/104/0809/02.
The EMBL accession numbers for the sequences reported in this article are X74515 (gene) and X74514 (cDNA).

LITERATURE CITED

