Genetic Variability in Carbon Fixation, Sucrose-P-Synthase and ADP Glucose Pyrophosphorylase in Maize Plants of Differing Growth Rate

J. P. Rocher*, J. L. Prioul, A. Lecharny, A. Reyss, and M. Joussaume

Laboratoire "Structure et Métabolisme des Plantes," associé au CNRS (UA 1128), Bât. 430, Université de Paris-Sud, 91405 Orsay, France

ABSTRACT

The net photosynthetic rate and the activities of ribulose 1,5 bisphosphate carboxylase (RubisCo), phosphoenolpyruvate carboxylase, sucrose-P-synthase, and ADP glucose-pyrophosphorylase, key enzymes of the leaf carbohydrate metabolism were compared in eight maize (Zea mays L.) genotypes presenting large differences in growth rate. The sucrose-P-synthase activity varied in the ratio 1 to 3 from the least active to the more active.

In the present paper, we have examined the possible biochemical basis of these differences. Four key regulatory-enzymes were considered: RubisCo, PEPcase for carbon fixation, SPS and ADPG-PPase for sucrose and starch synthesis, respectively. RubisCo is often thought to be limiting photosynthesis in vivo because of its low specific activity (12). PEPcase in maize was recently reported to be better correlated
growth rate was determined and correlated with the enzyme activity measured on the same plants. From one experiment to another the ranking of the genotypes was rather similar; however, some interchanges occurred in the more rapidly growing genotypes.

Enzyme Measurements

All the samplings for enzyme determination were made at 10:00 AM, i.e. 6 h after the beginning of the photoperiod. So, the light activable enzymes were activated. This point was checked for Rubisco and SPS. The discs were sampled in the medial part of the leaf. Preliminary experiments with discs punched in different parts of the fourth leaf showed that the medial region was representative of mean leaf activity. The area of the fourth leaf is higher than 50% of total leaf area at sampling stage.

The Rubisco activity and quantity were measured on two discs ground in 100 µL extraction buffer as in Prioul and Reyss (15). The crude enzyme extract was preactivated for 10 min in 32 mM MgCl₂ and 12 mM bicarbonate before adding 0.4 mM RuBP. Rabbit antiserum was raised against purified tobacco Rubisco. The calibration curves relating height of the immunorocket and enzyme quantity were prepared with purified enzyme from spinach and then the equivalence between spinach and maize purified enzyme was established to obtain absolute Rubisco content.

PEPcase was extracted by grinding three leaf discs (0.5 cm²) at −196°C in a conical glass homogenizer. The extraction buffer (0.1 M Tris-HCl [pH 8.0], 5 mM dithiothreitol) was added during thawing, and the slurry was centrifuged 3 min at 12,000g, 4°C in a microcentrifuge. Activity was measured spectrophotometrically at 340 nm: 20 µL extract was added to a reaction mixture (final volume 1 mL) containing 0.1 M Tris-HCl (pH 8.0), bovine serum albumin 6 mg mL⁻¹, 5 mM NaHCO₃, 10 mM MgCl₂, 0.2 mM NADH, 3.5 units NAD-malate-dehydrogenase (Sigma). The reaction was started by addition of 5 mM phosphoenolpyruvate (tri-cyclohexyl-ammonium salt). The activity was calculated from the linear part of the time dependent kinetic.

SPS activities were determined by a method derived from Huber (9). Extracts were obtained by grinding two leaf discs at −196°C in an Eppendorf tube with a glass rod. The leaf powder was warmed to 4°C with 250 µL extraction buffer (50 mM Hepes-NaOH [pH 7.5], 5 mM MgCl₂, 1 mM Na₂ EDTA, 2.5 mM dithiothreitol, 1% bovine serum albumin, 0.6% insoluble polyvinyl-pyrolidone). The extract was centrifuged for 1 min in a microcentrifuge at 12,000g. An aliquot of the supernatant (50 µL) was added to a reaction mixture (final volume 80 µL) containing 13 mM UDP glucose, 10 mM fructose-6-P, 14 mM MgCl₂. The reaction was run for 15 min at 30°C and terminated by adding 100 µL 1 M NaOH. The tubes were immersed in boiling water for 10 min in order to destroy free hexoses. Insoluble material was pelleted by a 30 s centrifugation at 12000g. The fructose moity of sucrose-P was determined by 0.12% resorcino reagent in 3.2 N HCl incubated 12 min at 100°C. The reaction product concentration was measured spectrophotometrically at 520 nm by comparison with controls assayed without fructose-6-P and with sucrose standard.
Figure 3. Quantity of Rubisco per leaf area as a function of mean growth rate in a series of maize genotypes (same genotype as Fig. 2). Mean ± SE. *P = 0.05.*

Figure 5. SPS activity per leaf area as a function of mean growth rate in a series of maize genotype (numbered as in Fig. 1) (*P = HS222.*
genotypes were grown at 1 month interval, F$_1$ x F$_2$ being in common so that it could be used as internal standard. Good
reported a high correlation between RubisCo or PEPcase activities and CO₂ assimilation in maize leaves of different ages. A correlation was also observed with dry matter accumulation but PEPcase paralleled more tightly biomass than RubisCo in maize seedling grown with different nitrate levels (21) or in senescing source-leaves during kernel growth (2). The presently observed variation in RubisCo is of the same magnitude as that in net photosynthesis but the higher intragenotype variability tends to obscure the correlation with growth rate. PEPcase activity varied similarly but the correlation coefficient, although higher, was not significant.

The expression of the activities on a leaf basis in the place of leaf area basis lead to higher correlation with growth but this simply expresses the great importance of leaf area differences as discussed earlier (16). RubisCo protein content or activity was highly correlated with soluble protein content. This is consistent with the fact that RubisCo-protein represent a high proportion of soluble protein, ranging from 36% for W64A to 47% for W₁W₂.

LITERATURE CITED

3. Duncan WG, Hesketh JD (1968) Net photosynthetic rates, relative growth rates and leaf numbers of 22 races of maize grown at eight temperatures. Crop Sci 8: 670-674